The following MATLAB program determines the first and second derivatives of the data given in the problem applying the finite difference schemes and developing
a custom user defined function

For second derivative:

*firstsecondderivatives(x,y)*.
The finite difference schemes used are the following:

For first derivative:

- At first point (three point forward)
- At last point (three point backward)
- At all other points (two point central)

For second derivative:

- At first point (four point forward)
- At last point (four point backward)
- At all other points (three point central)

DATA SET

x | -1 | -0.5 | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 |

f(x) | -3.632 | -0.3935 | 1 | 0.6487 | -1.282 | -4.518 | -8.611 | -12.82 | -15.91 | -15.88 | -9.402 | 9.017 |

**function [dy, ddy] = firstsecondderivatives(x,y)**

**% The function calculates the first & second derivative of a function that is given by a set**

**% of points. The first derivatives at the first and last points are calculated by**

**% the 3 point forward and 3 point backward finite difference scheme respectively.**

**% The first derivatives at all the other points are calculated by the 2 point**

**% central approach.**

**% The second derivatives at the first and last points are calculated by**

**% the 4 point forward and 4 point backward finite difference scheme respectively.**

**% The second derivatives at all the other points are calculated by the 3 point**

**% central approach.**

**n = length (x);**

**dy = zeros;**

**ddy = zeros;**

**% Input variables:**

**% x: vector with the x the data points.**

**% y: vector with the f(x) data points.**

**% Output variable:**

**% dy: Vector with first derivative at each point.**

**% ddy: Vector with second derivative at each point.**

**dy(1) = (-3*y(1) + 4*y(2) - y(3)) / 2*(x(2) - x(1)); % First derivative**

**ddy(1) = (2*y(1) - 5*y(2) + 4*y(3) - y(4)) / (x(2) - x(1))^2; % Second derivative**

**for i = 2:n-1**

**dy(i) = (y(i+1) - y(i-1)) / 2*(x(i+1) - x(i-1));**

**ddy(i) = (y(i-1) - 2*y(i) + y(i+1)) / (x(i-1) - x(i))^2;**

**end**

**dy(n) = (y(n-2) - 4*y(n-1) + 3*y(n)) / 2*(x(n) - x(n-1));**

**ddy(n) = (-y(n-3) + 4*y(n-2) - 5*y(n-1) + 2*y(n)) / (x(n) - x(n-1))^2;**

**figure(1)**

**subplot (3,1,1)**

**plot (x, y, 'linewidth', 2, 'color', 'k'), grid**

**title('x VS f(x)')**

**ylabel ('f(x)')**

**subplot (3,1,2)**

**plot (x, dy, 'linewidth', 2, 'color', 'b'), grid**

**title('x VS dy')**

**ylabel ('dy: First Derivative')**

**subplot (3,1,3)**

**plot (x, ddy, 'linewidth', 2, 'color', 'r'), grid**

**title('x VS dy')**

**ylabel ('ddy: Second Derivative'), xlabel('x')**

**figure(2)**

**plot (x, y, 'linewidth', 2, 'color', 'k');**

**hold on;**

**plot (x, dy, 'linewidth', 2, 'color', 'b');**

**hold on;**

**plot (x, ddy, 'linewidth', 2, 'color', 'r'), legend**

**ylabel ('y, dy, ddy'), xlabel('x')**

**end**

The following
operations are done in MATLAB command window to run the above function

**.**

**Program Outputs:****>> x = -1:0.5:4.5;**

**>> y=[-3.632 -0.3935 1 0.6487 -1.282 -4.518 -8.611 -12.82 -15.91 -15.88 -9.402 9.017];**

**>> firstsecondderivatives(x,y)**

**ans =**

**Columns 1 through 11**

**2.0805 2.3160 0.5211 -1.1410 -2.5833 -3.6645 -4.1510 -3.6495 -1.5300 3.2540 12.4485**

**Column 12**

**12.1947**

We can also plot the derivatives, below is the figure for the function, first and second order derivatives respectively.