(*Mathematica Codes for Newton-Raphson Approach*)
(*Write Your Own Function Below*)
Sigma = 100000*(Sqrt[epsilon] + 1/80*Sin[Pi*epsilon/0.002]) - 4000;
SigmaDerivative = D[Sigma, epsilon];
epsilontable = {0.0002};
Error = {1};
SetTolerance = 0.0005;
MaximumIteration = 100;
i = 1;
(*Newton-Raphson Algorithm Implementation*)
While[And[i <= MaximumIteration, Abs[Error[[i]]] > SetTolerance],
epsilonnew =
epsilontable[[i]] - (Sigma /.
epsilon -> epsilontable[[i]])/(SigmaDerivative /.
epsilon -> epsilontable[[i]]);
epsilontable = Append[epsilontable, epsilonnew];
Errornew = (epsilonnew - epsilontable[[i]])/epsilonnew;
Error = Append[Error, Errornew];
i++];
L = Length[epsilontable];
SolutionTable =
Table[{i - 1, epsilontable[[i]], Error[[i]]}, {i, 1, L}];
SolutionTable1 = {"Iteration Number", "Epsilon", "Error"};
L = Prepend[SolutionTable, SolutionTable1];
Print["Showing Results for the Newton-Raphson Approach when Sigma is \
4,000 and Initial Guess is 0.0002"]
ScientificForm[L // MatrixForm, 4]
Program Output:
No comments:
Post a Comment