This tutorial is related to analyzing the deflection and stress distribution of a cantilever beam. A fixed-free cantilever beam, (Young’s Modulus 𝐸, 𝑏×ℎ cross-section, length 𝐿) is supported at its left-hand end. A Force 𝐹 is applied at a distance 𝑎 from the left-hand end. We will first calculate the shape of the deflected beam and plot the result of deflection, shear and bending moment diagram. Next, we will generate a 2D contour map of the stress distribution along the beam.

Length of the beam, L = 1000 mm

Width of the beam, b = 50 mm

Height of the beam, h = 155 mm

Distance of the force location, a = 800 mm

Modulus of elasticity, E = 200 Gpa

Applied force, F = 25 KN

The shape of the deflected beam is calculated as [2-4],

The moment of inertia is calculated as,

**I = 1/12 bh^3**

The following Matlab codes are used to calculate the beam deflection and plot the results.

**close all**

**clear**

**clc**

**% Parameters from the question**

**E = 200*10^9;**

**a = 0.8;**

**b = 0.05;**

**h = 0.155;**

**I = (1/12)*(b*h^3);**

**f = 25000;**

**x = 0:0.01:0.8;**

**delta_1 = - (f*x.^2)./(6.*E.*I).*(3.*a - x); % for 0 <= x <= a**

**delta_2 = - (f*a.^2)./(6.*E.*I).*(3.*x - a); % for a <= x <= L**

**figure(1)**

**plot(x, delta_1)**

**xlabel('Length (m)')**

**ylabel('Beam Deflection (m)')**

**title('Cantilever Beam Deflection for 0 <= x <= a')**

**figure(2)**

**plot(x, delta_2)**

**xlabel('Length (m)')**

**ylabel('Beam Deflection (m)')**

**title('Cantilever Beam Deflection for a <= x <= L')**

The shear force and bending moment diagrams for the fixed free cantilever beam is shown below:

The Matlab codes for the calculation of shear and bending moments as well as plotting these diagrams are provided below.

**MATLAB Codes**

**close all**

**clear**

**clc**

**L = 1; % Unit in meters**

**n = 2; % Number of point loads on the beam**

**for i = 1:n**

**fprintf('Enter the point load and distance where load acts for %d node\n',i)**

**Wc(i)=input('Enter the load in Newton\n');**

**Lc(i) = input('Enter the distance of the point load from the fixed end\n');**

**if Lc(i)>L || Lc(i)<0**

**error('Please check the Length')**

**end**

**end**

**NL = zeros(1,n);**

**NW = zeros(1,n);**

**for i=1:n**

**[a,b]=max(Lc);**

**NL(i)=a;**

**NW(i)=Wc(b);**

**Lc(b)=[];**

**Wc(b)=[];**

**end**

**NL(n+1) = 0;**

**% Shear force diagram**

**figure(1)**

**Ra = sum(NW);**

**if NL(1)==L**

**X1 = L;**

**F1 = NW(1);**

**elseif i==1**

**X1 = [L NL(1) NL(1) 0];**

**F1 = [0 0 Ra Ra];**

**else**

**X1 = [L NL(1)];**

**F1 = [0 0];**

**end**

**S=[]; X=[]; F=[];**

**if n>=2**

**for i=2:n+1**

**x = [NL(i-1) NL(i)];**

**S= [S NW(i-1)];**

**f = sum(S);**

**X= [X x];**

**F = [F f f];**

**end**

**end**

**subplot(2,1,1)**

**plot([X1 X],[F1 F],'b')**

**xlim([0 L]);**

**hline = refline(0,0);**

**hline.Color = 'k';**

**legend('Shear Force','Reference')**

**title('Shear Force Diagram of Cantilever Beam')**

**xlabel('Length of the Beam in Meter')**

**ylabel('Shear Force in Newton')**

**hold on**

**grid on**

**fprintf('Reaction Force =%d N\n',Ra)**

**% Bending moment diagram**

**subplot(2,1,2)**

**if NL(1)<L**

**X1=NL(1): L;**

**M1 = zeros(size(X1));**

**plot(X1,M1,'r')**

**hold on**

**grid on**

**end**

**Xm=[];**

**Mm=[];**

**for i=1:n**

**X = NL(i+1):0.1:NL(i);**

**M = -(NW(1,1:i)*((NL(1,1:i))'-newX(X,i))) ;**

**Xm =[X Xm];**

**Mm =[M Mm];**

**end**

**plot(Xm,Mm,'r')**

**xlim([0 L]);**

**hline = refline(0,0);**

**hline.Color = 'k';**

**legend('Bending Moment','Reference')**

**title('Bending Moment Diagram of Cantilever Beam')**

**xlabel('Length of the Beam in Meter')**

**ylabel('Bending Moment in Newton-Meter')**

**hold off**

**grid on**

**function x = newX(X,i)**

**[~,d] = size(X);**

**x = zeros(i,d);**

**for j=1:i**

**x(j,1:d) = X;**

**end**

**end**

The bending stress in the beam is calculated as [2-4],

Where,

*δ*is calculated as,In the following, the stress distributions for the cantilever beam are shown. The Matlab codes are appended after the results.

**MATLAB CODES**

**close all**

**clear**

**clc**

**% Parameters from the question**

**L = 1;**

**E = 200*10^9;**

**a = 0.8;**

**b = 0.05;**

**h = 0.155;**

**I = (1/12)*(b*h^3);**

**f = 25000;**

**M1 = f*a;**

**M2 = f*(L-a);**

**x = 0:0.01:0.8;**

**y = 0:0.01:0.8;**

**delta_1 = - (f*x.^2)./(6.*E.*I).*(3.*a - x); % for 0 <= x <= a**

**delta_2 = - (f*a.^2)./(6.*E.*I).*(3.*x - a); % for a <= x <= L**

**sigma_1 = (M1.*delta_1)./I;**

**x = rand(100,1)*4-2;**

**y = rand(100,1)*4-2;**

**z = (M1.*((f*x.^2)./(6.*E.*I).*(3.*a - x)))./I;**

**z1 = (M2.*((f*a.^2)./(6.*E.*I).*(3.*x - a)))./I;**

**F = TriScatteredInterp(x,y,z);**

**ti = -1:.25:1;**

**[qx,qy] = meshgrid(ti,ti);**

**qz = F(qx,qy);**

**figure(1)**

**scatter3(x,y,z)**

**title('Mesh Plot for 0 <= x <= a')**

**hold on**

**mesh(qx,qy,qz)**

**figure(2)**

**contour(qx,qy,qz)**

**title('Contour Plot for 0 <= x <= a')**

**F = TriScatteredInterp(x,y,z1);**

**ti = -1:0.25:1;**

**[qx,qy] = meshgrid(ti,ti);**

**qz = F(qx,qy);**

**figure(3)**

**scatter3(x,y,z)**

**title('Mesh Plot for a <= x <= L')**

**hold on**

**mesh(qx,qy,qz)**

**figure(4)**

**contour(qx,qy,qz)**

**title('Contour Plot for a <= x <= L')**

**REFERENCES**

[1] MATLAB 2020b Academic Version from MathWorks (https://www.mathworks.com/)

[2] Budynas-Nisbett, "Shigley's Mechanical Engineering Design," 8th Ed.

[3] Gere, James M., "Mechanics of Materials," 6th Ed.

[4] Lindeburg, Michael R., "Mechanical Engineering Reference Manual for the PE Exam," 13th Ed.

[5] Solid Mechanics Part I: An Introduction to Solid Mechanics by Piaras Kelly

#FixedFreeBeam #CantileverBeam #StressDistribution #ShearForce #BendingMoment #Matlab

## No comments:

## Post a Comment